<!--go-->
量子计算的相干性是量子并行运算的精髓,但在实际情况下,量子比特会受到外界环境的作用与影响,从而产生量子纠缠。量子相干性极易受到量子纠缠的干扰,导致量子相干性降低,也就是所谓的消相干现象。实际的应用中,无法避免量子比特与外界的接触,量子的相干性也就不易得到保持。所以,量子消相干问题是目前需要解决的重要问题之一,它的解决将在一定程度上影响着量子计算机未来的发展道路。
解决完了量子干扰,还有量子纠缠。
量子作为最小的颗粒,遵守量子纠缠规律。即使在空间上,量子之间可能是分开的,但是量子间的相互影响是无法避免的。介于此,量子纠缠技术被联想到量子信息的传递领域。在一定意义上,利用量子之间飞快的交流速度从而实现信息的传递。
而且量子并行计算也是一个难点。量子计算机独特的并行计算是经典计算机无法比拟的重要的一点。同样是一个n位的存储器,经典计算机存储的结果只有一个。但是量子计算机存储的结果可达2n。其并行计算不仅在存储容量上远超越了后者,而且读取速度快,多个读取和计算可同时进行。正是量子并行计算的重要性,它的有效应用也成为了量子计算机发展的关键之一。
当然最难也是现在存在于所有技术之前的鸿沟,就是量子不可克隆。量子不可克隆性,是指任何未知的量子态不存在复制的过程,既然要保持量子态不变,则不存在量子的测量,也就无法实现复制。对于量子计算机来说,无法实现经典计算机的纠错应用以及复制功能——也就是说,除非设计一台百分之一百不可能会出错的计算机,否则这个理论就无法实现。
Loading...
未加载完,尝试【刷新】or【退出阅读模式】or【关闭广告屏蔽】。
尝试更换【Firefox浏览器】or【Chrome谷歌浏览器】打开多多收藏!
移动流量偶尔打不开,可以切换电信、联通、Wifi。
收藏网址:www.zongcai666.com
(>人<;)